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Analyzing aircraft measurements of individual drop sizes in clouds, it was found that the 
probability of seeing a drop of radius r in a small volume V decreases as V in power D(r) 
where O<D(r)cl, i.e. it is proportional to the drop size dependent power of the volume 
drops occupy. This paper shows striking examples of the spatial distribution of large 
cloud drops using models that simulate the observed power laws. In contrast to currently 
used models that assume homogeneity, these models show strong drop clustering, the 
more so the larger the drops. The degree of clustering is determined by the observed 
exponents D(r). It is important to realize that this clustering arises naturally from the 
power-law statistics and does not require any sort of deus ex machina. This clustering 
has vital consequences for rain physics, which for decades has been unable to explain 
how rain can form so fast. it a i s 0  heips explain why remotely sensed cioud drop size is 
generally biased and why clouds absorb more sunlight than conventional radiative 
transfer models can explain. 
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Abstract 

By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a 
companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a 
linear scale 1 decreases as ID(’’ where 0 <D(r) 5 1. This paper shows striking examples of the 
spatial distribution of large cloud drops using models that simulate the observed power laws. In 
contrast to currently used models that assume homogeneity and therefore a Poisson distribution 
of cloud drops, these models show strong drop clustering, the more so the larger the drops. The 
degree of clustering is determined by the observed exponents D(r). The strong clustering of 
large drops arises naturally from the observed power-law statistics. This clustering has vital 
consequences for rain physics explaining how rain can form so fast. It also helps explain why 
remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than 
conventional radiative transfer models predict. 
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1. Introduction 

Though it is widely assumed that cloud drops are distributed uniformly in space and 
fluctuations of number of drops in a given small volume follow Poisson statistics (e. g., Young, 
1993), there is strong evidence of cloud drop clustering on a wide range of scales down to 
centimeter scales (e.g., Barker, 1992; Pinsky and Khain, 2001, 2003; Kostinski and Jameson, 
1997; Jameson et al., 1998; Davis et al., 1999, Shaw et al., 2002). Clustering can be identified as 
significant fluctuations in cloud drop concentration (Jameson et al., 1998) defined as the 
expectation of the number of drops per volume when volume tends to 0 (Pawlowska and 
Brenguier, 1997). Analyzing Forward Scattering Spectrometer Probe (FSSP) data Baker (1992) 
reported a deviation from a Poisson distribution which is characterized by a perfectly random 
spatial distribution. Pinsky and Khain (2001) studied a fine structure of cloud drop concentration 
with Fast FSSP (Brenguier et al., 1998) measurements; they showed that the degree of drop 
concentration fluctuations strongly depends on the drop size. Later Pinsky and Khain (2003) 
found that drop clusters on cm-scales are induced by droplet inertia within turbulent flow. Thus, 
small-scale drop variability cames information about cloud fine structure. Davis et al. (1999) 
assumed scale-invariance in cloud liquid water and used fractal characteristics to describe its 
spatial variability on scales fiom cm to hundreds of meters, while Jameson et al. (1998) and 

per liter using pair-correlation functions. Recently Shaw et al. (2002) argued that the pair- 
correlation function is the most natural and physically meaningful measure of correlations. 
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Liu and Hallett (1998) and Liu et al. (2002) looked at the problem from another angle: 
they pointed out that cloud drop size distribution is not a scale independent function but strongly 
depends on spatial scale over which the drops are sampled. However, as suggested by Liu et al. 
(2002), there is a saturation scale beyond which observed drop size distribution is scale 
independent. For scales smaller than the saturation scale, drop size distribution is “ill-defined” 
and changes substantially from scale to scale. They hypothesized that the unique property of 
scale dependence requires a new theoretical framework that treats the scale as an independent 
variable, just as the variables of space and time are treated in the current framework. Such a 
parameterization, for example, may result in a better representation of clouds in climate models 
than the complicated models with detailed microphysics because of the large scales involved 
(Liu et al., 2002). 

Knyazikhin et al. (2004) proposed a way to quantitatively parameterize cloud drop 
clustering as a function of drop size. They suggested that number of drops is scale-invariant and 
follows a power law with a drop-size dependent exponent (Wiscombe et al., 2003). The 
clustering arises naturally from the power-law statistics and thus the drop-size dependent 
exponents can be used for its parameterization. Finally, using this parameterization, they 
estimated the direct impact of small-scale spatial variability of drops on radiative transfer, 
concluding that current radiative transfer theory underestimates the effect of large drops on cloud 
optical depth (Knyazikhin et al., 2002). 

The present paper compliments Knyazikhin et al. (2004) results in two ways: (i) it 
verifies their funding of a power-law variation in cloud drop number using much more FSSP 
samples acquired during the ARM Cloud Intense Operational Period (IOP) and (ii) based on 
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these observations, it develops a method for generating spatial distribution of drops with the 
observed magnitude of clustering. 

Understanding of spatial distribution and small-scale fluctuations (inhomogeneity) of 
large drops in clouds is essential to both cloud physics and atmospheric radiation communities. 
For cloud physics, it relates to the coalescence growth of raindrops (Twoney, 1976) while for 
radiation, it has a strong influence on a cloud’s radiative properties indirectly through a rapid 
modification of the cloud drop size distribution and directly through changing optical path length 
(Knyazikhin et al., 2004). 

2. Small-scale cloud drop size variability 

The analyses of the FSSP data acquired during the First International Satellite Cloud 
Climatology Project (ISCCP) Regional Experiment (FIRE) in July 1987 indicates that the total 
number N(Z,r) of samples at a linear scale I with drops of radius r follows a power law with a 
drop-size dependent exponent D(r), i.e., (Knyazikhin et al., 2004) 

The exponent D(r) is a non-increasing function of the drop size r and varies between 1 (for small 
drops) and 0 (for very large drops). If D(r) = 1, drops “densely fill” the space they occupy and 
the number of “nonempty” samples at a linear scale I is inversely proportional to I and the total 
number of drops is proportional to Z3.  The case D ( r )  = 0 corresponds to a few sparsely 
distributed individual drops. For 0 < D(r) < 1, the occurrence frequency of drops decreases with 
the drop-size r; in other words, the probability of finding a drop of radius r at a linear scale I is 
proportional to Io(.). 

To illustrate Eq. (l), Fig. 1 shows variation in N(Z,r) for r = 7. l f2  pm and r = 22.6f2 pm 
derived fi-om data acquired during a 2-hour flight on March 3,2000 in Kansas and Oklahoma as 
part of the ARM Cloud IOP (Dong et al., 2002). It is clearly seen that for a scale range of almost 
3 orders of magnitude (from 80 m up to 50 km), the total number of samples with drops follows 
a power law with exponents D =: 1 and D = 1/2 for small (r = 7.1 pm) and large (r = 22.6 pm) 
drops, respectively. Figure 2 shows variation in concentration of small and large drops in 80-m 
intervals along the flight path. One can see that while small drops are more likely unclustered, 
large drops are positively clustered, i.e., detecting a drop makes it more likely that the next drop 
will be detected nearby. This suggests that the deviation of the exponent from unity indicates a 
clustering in drop - -  spatial distribution. 

What is the importance of Eq. (1) deduced from the analysis of FSSP drop size 

in contrast to the assumption underlain the radiative transfer theory, the mean number of 
drops is proportional to the drop size dependent power of the volume (Wiscombe et al., 
2003); 
such a behavior can not be described by a density distribution function used in data analysis; 
a cumulative distribution function should be used instead (Knyazikhin et al., 2002); 

distributions ? It follows from this equation that 
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there are more large drops at small scales than the theory currently accounts for; their 
radiative impact is consequently underestimated (Knyazikhin et al., 2004). 

Development of models of spatial drop distribution and derivation of respective cumulative 
distribution functions parameterized in terms of the drop exponents are required to better 
understand physics behind such distributions and to improve prediction capacity of cloud- 
radiation models. Next section shows how one can simulate the spatial distribution of drops that 
follow a power law (1) with a given exponent. The case D(r)  = 1 for small drops is well 
documented in literature - the drop distribution can be simulated by the Poisson distribution with 
a given density. The spatial distribution of very large drops with exponent D(r) = 0 is trivial: 
there are a few (if any) single drops randomly located. We will focus here on large drops with 
exponents 0 < D(r) < 1. 

3. Simulation 

The most natural way to simulate spatial distribution of drops with scaling properties 
satisfying Eq. (1) is to use a threshold defined by a parameter D in turbulence cascade models. It 

dimensional cascade field c p ~  at scale I to exceed a singularity of order y is proportional to f - D ,  i.e. 
is hlG-*= (z.g., ~ ~ h ~ m ~ ~  md ~ovejoy, 1989; cwabra * lY09) 11- Ula1 - A  A- LIIL: - proba32ity -- of a J- 

Here D and y are nontrivially related; namely, D = D(y) is the fractal dimension of the subset of 
c p ~  with singularity strength y. Indeed, if both parts of Eq. (2) are multiplied by the total number 
of boxes, l / f ,  then on the left side one gets the number of boxes with singularity strength 
between y and y+dy, while on the right side it will be tD. Assuming for simplicity d = 1, we get 
two limiting cases of D = 0 and D = 1, describing extreme events of singular isolated points and 
a densely filled support, respectively. In order to simulate a set with dimension D, therefore, one 
can generate a 1-dimensional cascade (e.g., Meneveau and Sreenivasan, 1987) and then at scale I 
select singularity level y'that corresponds to a given dimension D. Spatial distribution of points 
that are located on the intersection of the threshold TY (a line) and the cascade field cppl will have 
the dimension D in the process of Z+O. 

The upper panel in Fig. 3 shows a 12-cascade p-model (Meneveau and Sreenivasan, 
1987) with p = 0.35. For this simple model, there is an analytical relationship between the 
dimension D of the set and its singularity level y. As an example, a threshold in the upper panel 
cuts a set of 79 clustered points shown in the lower part of the panel as small squares. Its 
dimension is estimated to be 0.3 (lower panel) and corresponds to y =  2/3. The transition to a 
slope of -1 for large scales seen in the lower panel is due to a finite size of the interval in which 
points are located. 

Similar to a 1-dimensional cascade model (that lies on a plane), one can use 2- and 3- 
dimensional cascades that lie in 3- and 4-dimensional spaces, respectively. The dimension of the 
set with singularity strength ycan be still described by Eq. (2). In case of a 3-dimensional 
cascade model, an intersection of the cascades by a 3-dimensional plane results in a set of points 
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randomly distributed in space. These points will be clustered in 3-dimensional space in a way 
similar to the ones in the upper panel of Fig. 3 are clustered on a line. The resulting degree of 
clustering is defined by the singularity strength y and thus by the fractal dimension D. Figure 4 
illustrates this process. Upper panel shows spatial distribution of more than 20,000 large drops 
as an intersection of a 3-dimensional plane and a 3-dimensional cascade model. It follows from 
scaling behavior of non-empty boxes (lower panel) that the mean number of drops N in volume V 
varies with Vas VD (Wiscombe et al., 2003; Kinyazikhin et al., 2004). This conflicts with the 
fundamental assumption of the radiative transfer - the mean number of drops in volume V is 
proportional to V. The fractal dimension D of these drops is 0.56 which coincides with the one 
observed during a 2-hour flight on March 3,2000 (see Fig. 2 and its analysis shown in Fig. 1). 

Finally, Fig. 5 illustrates spatial distributions of 5,115 drops for two values of the fractal 
dimension. The “grey” drops are distributed uniformly. Their fractal dimension is 1; this is an 
implicit assumption behind most of the current radiative transfer theories in cloudy atmosphere. 
On contrast, the “black” drops are clustered and their spatial variation follows Eq. (1) with D 
close to 0.55. As a result, the frequency of black drops occurrence along the line is lower than 
the frequency of occurrence of grey drops. However, the mean number of black drops in non- 
empty cubic cm is larger than that of grey (Knyazikhin et al., 2004). 

Consider a “tube” with a cross-section thick enough to capture the 3-dimensional 
structure of drop spatial distribution. Since distribution of the black (and grey) drops are 
isotropic by construction (i.e., there is no a preferential direction), any long enough multiple- 
bend tube will show a spatial distribution statistically similar to that observed during the cloud 
IOP (Fig. 2). By statistical similarity here we understand that the number of large drop samples 
follows a power law (1) with exponents D close to 1/2. Unfortunately, a simulated 3- 
dimensional spatial distribution of drops (8 cascades requires about 20 million points) doesn’t 
provide us with a long enough scaling range to observe a power-law behavior similar to the one 
in Fig. 1. Instead, we have run a 1-dimensional 23-cascades model with the same fractal 
dimension D = 0.56. Figure 6 illustrates the results. In addition, a case of perfectly random 
distribution of the same number of drops is also shown. 

Thresholding multiplicative cascades is not the only way to simulate cloud drops whose 
spatial distribution follows Eq. (1). Another natural technique is to use an additive Levy flight 
(e.g., Mandelbrot, 1982, p. 132-143): a sequence of jumps that are statistically independent 
segments whose length follows the probability distribution 

i.e., the number of jumps exceeding x is a hyperbolic distribution with parameter a. Note that 
for Levy flights all moments of order k > a diverge. The limiting case of a = 2 corresponds to a 
Gaussian distribution; thus its random walk corresponds to the Brownian motion where all jumps 
are normally distributed. The case a = 1 is the Cauchy distribution: the behavior is dominated 
by one or two large “jumps.” Decreasing a makes the long segments longer while the short 
segments shorter thus increasing clustering. An example of this distribution for simulating rain 
drops can be found in Lovejoy and Mandelbrot (1985). For the relationship between a 
hyperbolic parameter a from (3) and a fractal dimension D defined in (1) see Mandelbrot (1982). 
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In general, the exponent D determines the type of the distribution. The probability theory 
distinguishes three classes, or types, of distributions; that is, absolutely continuous (-1); 
singular (0 < D < 1) and discrete (D = 0) distributions (e.g., Richtmyer, 1978, p- 260). Each of 
these classes contains “infinite” number of distributions. A multiplicative turbulence cascade 
model and an additive Levy distribution used here are just two examples fiom the set of singular 
distributions. Their common feature is the exponent D; the closer D to 0 the closer values of the 
distribution function to the discrete set. In other words, the decrease in D forces drops to be 
located around a discrete set of points irrespective of a particular example of singular 
distribution; hence clustering. This is a direct consequence of the Lebesque (e-g., Richtmyer, 
1978, p. 260) theorem on decomposition of the distribution and the Hausdorf-Besicovitch 
dimension (e.g., Barnsley, 1988, p. 202). 

4. Discussion 

Equation (1) provides a quantitative means for a size-dependent description of clustering 
and spatial distribution of drops. It states that the intensity of clustering is measured by the -..._._.. I,,. --.-..---b n n 1 1 ~ 1 -  ,.--ii-- n I- pu wcl- raw G A p u F ; u L  w u \ 1. 1 uc au1011c1 u 15 ihe larger &gee of cl-uster-ig. ’&%s;ii D = 1, 
cloud drops are not clustered and the number of drops in a volume is proportional to the volume. 
Equation (1) also allows us to develop a scale-invariant model of the spatial distribution of large 
drops that has the same drop size-dependent exponents as the ones observed. Below we briefly 
discuss the possible use of Eq. (1) and cloud drop models in cloud physics and radiation. 

The spatial distribution of cloud drops, especially large drops, is not yet fully understood 
and remains controversial (see Pinsky and Khain, 2001 and references therein). Small-scale 
spatial correlation and clustering are important processes in cloud drop growth rate and can help 
in explaining of some fundamental problems in cloud physics. For example, Twomey (1976) 
suggested clustering (“pockets of high liquid water”) for explaining observed wann rain. Once a 
correct theory which predicts the observed power-law statistics is in hand, the strong clustering 
of larger drops falls out naturally from the statistics. No deus ex machina need be invoked to 
explain the clustering. Recently, McGray and Liu (2003) developed a new model for cloud 
drizzle formation that quantitatively explains how cloud turbulence (that governs clustering) 
enhances both condensation and collection growths. In particular, they showed that once drops 
reach a critical radius of about 20 pm they can grow much faster through collection transforming 
cloud drops to drizzle size. Classical condensation theory was unable to explain the production 
of these drops because of their slow growth rate. 

To see the consequences of scaling behavior (1) on cloud radiative properties, let us 
assume for simplicity that our cloud consists of only two types of drops: small drops with DS = 1 
and large drops with 0 < DL < 1. The mean number, n(r,V), of drops with radius r in a volume V 
is 

where 
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and 

are the mean number of small and large drops in volume V, respectively. Here ps and p~ are 
volume-independent (generalized) drop concentration [in number per ( ~ m ~ ) ~ ,  see Wiscombe et 
al., 2003 and Knyazikhin et al., 20041. Substituting (4)-(5) into the definition of droplet effective 
radius re  (e.g., Hansen and Travis, 1974) we get 

It follows from (6) that for small scales, re( V) + r~ as V + 0, while for large scales re( V) + rs as 
V + oq If one assumes DL = 1 , as does the conventional technique, we get re( V) = re which is 
typically much closer to rs than to r L  since concentration of large drops is “negligible” compared 
to small ones ( p ~ <  < p s ) .  In other words, the conventional technique systematically 
underestimates the effect of large drops at small scales, i.e. the effective radius of a cloud with 
large drops distributed uniformly (grey dots in Fig. 5 )  is almost always smaller than the one for a 
cloud where the spatial distribution of large drops follows (1) with D < 1 (as black dots in Fig. 
5). This suggests a partial explanation of the fact that re retrieved from satellites is usually larger 
than the one measured in situ (e.g., Dong et al. (2002) for the March 2000 ARM Cloud IOP, also 
Figs. 1 and 2). 

Having size dependent models of (realistic) spatial distribution of cloud drops in hand, 
the next natural step in understanding the radiative impact of correlation (or clustering) in the 
spatial distribution of large drops will be an accurate calculation of radiative regime in these 
modeled clouds. Knyazikhin et al. (2004) derived an equation that describes the attenuation of 
the radiance in the clouds that have spatial distribution of drops parameterized in terms of the 
exponents as in Eq. (1). They showed that the assumption of small-scale homogeneity of cloud 
drops (that translates to D = 1 in the parameterization (1)) underestimates the radiative effect of 
large drops that can result in systematic underestimation of cloud optical distance. To confirm 
Knyazikhin et al. (2002,2004) conclusions we apply the “first-principle” Monte Carlo method to 
the simulated above clouds. The results (see, Larsen et al. 2004, in preparation) will be reported 
elsewhere. 
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Figure 1. Number, N(r,Z), of FSSP samples containing drops with radii r = 7.132 p (bin #) 
and r = 22.632 pm (bin # 12) vs. scale 1 (see Knyazikhin et al., 2004) derived from data collected 
by the FSSP probe on board of the University of North Dakota Citation aircraft during the ARM 
Cloud Intensive Operational Period (March, 2000). The data are publicly available at 
http://iop.archive.~.novla~-iop/2000/s~/cloud/poellot-citation/. While for small drops, D =: 
1, for large drops at scales between 80 m and 40 km variation in N(r,Z) clearly follows a power 
law with an exponent D = 0.56. 
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Figure 2. Concentration of drops of radius ~ 7 . 1  pm (bin #4) and ~ 2 2 . 6  pm (bin #12) for the 2 
hours of the same flight (March 3,2000) as in Fig. 1. Note that small droplets (upper panel) 
almost uniformly fill the space; the set of points on the horizontal axis with positive 
concentration has a fractal dimension close to 1. In contrast, large drops (lower panel) are 
clustered; a fractal dimension of the set with positive concentration is 0.56. 
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Figure 3. The top panel is a simple log-binomial cascade model known in the literature as the p- 
model (Meneveau and Sreenivasan, 1987). 12 cascades with parameterp = 0.35 are used. An 
example of a threshold with a singularity strength y = 2/3 is shown as a dash line. Points on the 
horizontal axis at which values of the cascade field exceed the threshold are shown in the top 
panel as dots. There are 79 of them and they are obviously clustered. The lower panel illustrates 
a log-by-log plot of number of nonempty boxes of scale I needed to cover these 79 points versus 
the scale 1. The small-scale slope gives the dimension D of the points. For this simple cascade 
model an analytical relationship between fractal dimension D and the singularity y can be found 
in Meneveau and Sreenivasan, (1987). According to this relationship y = 2/3 corresponds to 
=0.3. 
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Figure 4. A simulated “cloud” piece with more than 2 lo4 (actually 21058) large drops. A 3- 
dimensional 8-cascade model with the total number of pixels 224= 2 lo8 was used. A 4- 
dimensional cutoff at a singularity level that gives fiactal dimension D = 0.56 has been used to 
simulate spatial distribution of drops (upper panel). Lower panel demonstrates a straight line on 
a log-log plot of number of nonempty boxes vs. scale, Le., N(I> = TD = l-3D . Note that the 
observed variation in N(Z) along the flight path for drops with radii Y = 22.6f2 ,um exhibits 
similar behavior (Fig. 1). 
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Figure 5. An example of the space-filling properties of distributions with different fractal 
dimensions. Here are an equal amount of drops (total number of 51 15) that are colored grey and 
black. The grey drops are distributed perfectly randomly throughout the space (having a fractal 
dimension close to 1) whereas the black particles are distributed in a such way that their fractal 
dimension is significantly less than 1 (between 0.5 and 0.55). The spatial distribution of black 
drops was simulated as an intersection of a 3-dimensional plane and a 3-dimensional 8-cascade 
model imbedded in a 4-dimensional space. 

15 



u) 
Q) 
X 
0 
4 
> + 

E 
a> 
S 
0 c 
0 

a> 
4 

3 
Z 

rc 

L 

E 

I O 8  \\ 
1 o7 

1 o6 

1 o5 

1 o4 

1 o3 

I O ‘  

1 oo 

randomly distributed 

I 
1 o2 

1, 

I ! I I I I ! 

 IO-^  IO-^  IO-^  IO-^  IO-^ IO-’ 

scale 

Figure 6.  Scaling behavior of nonempty “boxes”, N, vs. scale I for a 1-dimensional cascade 
model with 23 cascades. A power-law behavior with a scaling exponent -0.56 is well 
established over at least 3 orders of magnitude. For comparison, the N vs. I curve for a perfectly 
random distribution of the same number of drops (142,680) is also shown. Note that at small 
scales ( b o ) ,  N(Z) is equal to the total number of drops (in this case, 142,680). 
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